航空航天港

 找回密码
 注册会员

QQ登录

只需一步,快速开始

返回列表
楼主: hkhtg090201
收起左侧

[任务跟踪] NASA2011年11月发射的火星科学实验室(MSL/Curiosity好奇):向夏普山进发

[复制链接]
zhang 发表于 2010-9-18 05:34 | 显示全部楼层
关于“好奇”的 5 件事

Five Things About NASA's Mars Curiosity Rover
09.16.10

Mars Science Laboratory, aka Curiosity, is part of NASA's Mars Exploration Program, a long-term program of robotic exploration of the Red Planet. The mission is scheduled to launch from Cape Canaveral, Fla., in late 2011, and arrive at an intriguing region of Mars in August 2012. The goal of Curiosity, a rolling laboratory, is to assess whether Mars ever had an environment capable of supporting microbial life and conditions favorable for preserving clues about life, if it existed. This will help us better understand whether life could have existed on the Red Planet and, if so, where we might look for it in the future.

   1. How Big Is It?: The Mini Cooper-sized rover is much bigger than its rover predecessors, Spirit, Opportunity and Pathfinder. Curiosity is twice as long (about 2.8 meters, or 9 feet) and four times as heavy as Spirit and Opportunity, which landed in 2004. Pathfinder, about the size of a microwave oven, landed in 1997.
   2. Landing--Where and How: In November 2008, possible landing sites were narrowed to four finalists, all linked to ancient wet conditions. NASA will select a site believed to be among the most likely places to hold a geological record of a favorable environment for life. The site must also meet safe-landing criteria. The landing system is similar to a sky crane heavy-lift helicopter. After a parachute slows the rover's descent toward Mars, a rocket-powered backpack will lower the rover on a tether during the final moments before landing. This method allows landing a very large, heavy rover on Mars (instead of the airbag landing systems of previous Mars rovers). Other innovations enable a landing within a smaller target area than previous Mars missions.
   3. Toolkit: Curiosity will use 10 science instruments to examine rocks, soil and the atmosphere. A laser will vaporize patches of rock from a distance, and another instrument will search for organic compounds. Other instruments include mast-mounted cameras to study targets from a distance, arm-mounted instruments to study targets they touch, and deck-mounted analytical instruments to determine the composition of rock and soil samples acquired with a powdering drill and a scoop.
   4. Big Wheels: Each of Curiosity's six wheels has an independent drive motor. The two front and two rear wheels also have individual steering motors. This steering allows the rover to make 360-degree turns in-place on the Mars surface. The wheels' diameter is double the wheel diameter on Spirit and Opportunity, which will help Curiosity roll over obstacles up to 75 centimeters (30 inches) high.
   5. Rover Power: A nuclear battery will enable Curiosity to operate year-round and farther from the equator than would be possible with only solar power.

Written by Courtney O'Connor
zhang 发表于 2010-9-20 00:23 | 显示全部楼层
http://media.vmixcore.com/vmixcore/download?token=570400f2ffebc552290c5e073a527b9e&expires=1325444582134&signature=9XkFkE%2BzzvSzqQ4pUl8QPEZtpUg%3D

Building Curiosity - Rover Rocks Rocker-Bogie

Engineers at NASA's Jet Propulsion Laboratory put Curiosity, the Mars Science Laboratory rover, through an obstacle course to test its mobility system.

视频, 关于 MSL 的行走系统。Top Speed: 4cm/sec
 楼主| hkhtg090201 发表于 2010-9-25 19:45 | 显示全部楼层
NASA火星科学实验室上将安装激光设备(图)

新闻发布时间:2010-09-25




  [据美国aviationweek网站2010年9月24日报道]  美国喷气推进实验室的技术人员们正准备在NASA的火星科学实验室上安装一个独特的设备,可以让这个大型的漫游者在7米之外分析岩石和土壤的化学成分。
  
  这个名为“化学摄像机”(ChemCam)的设备由美国和法国联合研制,利用掺钕钨酸钾钆Nd:KGW激光,使目标的某一点物质出现蒸发,并使用激光诱导分解光谱技术对蒸发地点释放的光束进行分析。激光还能激起火星灰尘,对岩石之下进行分析。
  
  ChemCam安装在900千克的漫游者的摄影机杆上,通过光纤缆线与漫游者上的光谱仪/处理器单元相连。
  
  工作原理是,激光向目标发射5束清洁光束,然后进行光谱分析,并取平均值。每次发射持续5纳秒。这个仪器有望在每个火星日进行15次分析。
  
  火星科学实验室计划在2011年11月发射,2012年8月到达火星表面,开始工作。(中国航天工程咨询中心  许红英)
bestman2010 发表于 2010-9-26 09:34 | 显示全部楼层
ChemCam安装在900千克的漫游者的摄影机杆上,通过光纤缆线与漫游者上的光谱仪/处理器单元相连。
-----------------------------上述数据有误吧
cmj9808 发表于 2010-9-26 09:41 | 显示全部楼层
ChemCam安装在(900千克的漫游者的)摄影机杆上
ltnmzh 发表于 2010-10-28 12:19 | 显示全部楼层

火星车制造过程实况直播

本帖最后由 ltnmzh 于 2010-10-28 12:24 编辑

JPL装配Curiosity号火星车的实况直播。


http://www.ustream.tv/nasajpl


ltnmzh 发表于 2010-10-28 12:31 | 显示全部楼层
希望我们月球车的制造者们参考。
ltnmzh 发表于 2010-10-28 12:35 | 显示全部楼层
艺高人胆大,全世界随便看。不过看来基本上都已经装好了。这车有点像蜘蛛,有个大屁股。
Chris_Tse 发表于 2010-11-1 17:34 | 显示全部楼层

美国2013年发射的火星取样返回探测器

今天看PBS的纪录片,里面谈到

貌似美国打算2013年发射去火星采用返回的探测器

哪位达人科普下
cmj9808 发表于 2010-11-1 18:12 | 显示全部楼层


这个应该是比较早的消息,mars sample return属于十年一次的旗舰级任务,00-10是MSL,10-20是JEO,MSR肯定要排到2020年以后了
cmj9808 发表于 2010-12-23 19:42 | 显示全部楼层
本帖最后由 cmj9808 于 2010-12-23 19:47 编辑

与下降级Skycrane整合在一起的MSL

 楼主| hkhtg090201 发表于 2011-1-1 15:24 | 显示全部楼层
NASA“好奇”号火星漫游车将使用激光攻击岩石(图)

新闻发布时间:2010-12-31




研究人员准备对ChemCam进行试验


    [据美国太空团体网站近日报道]  安装在“好奇”号火星漫游车上的“化学与摄像机”(ChemCam)仪器可以利用激光击碎岩石,该激光的能量足以将岩石表面针头大小的部分激成发光的离子气体。之后,ChemCam会通过望远镜观测闪现的光亮,并通过分析光谱范围来确定目标的化学元素。
  
  ChemCam可探测到漫游车周围半径7米范围内的岩石或土块的信息。这些信息将帮助漫游车团队研究漫游车所处的环境,并选择钻孔或铲取的目标,使用漫游车上的其他仪器进行进一步分析。通过在漫游车上的10个科学仪器,漫游车团队将评估在漫游车着陆地区是否存在适于微生物生活以及保留生命存在过证据的环境。NASA将于2011年下半年发射“好奇”号以及飞行系统的其他部分。该飞行系统将于2012年8月将漫游车送至火星表面。
  
  韦恩斯(Wiens)是美国能源部洛斯阿拉莫斯国家实验室的地球化学家,也是ChemCam的首席研究员。他所领导的由美国和法国成员组成的团队,在2004年NASA举行的参与火星科学实验室计划公开赛期间提出了ChemCam仪器建议,该仪器现已被安排在了“好奇”号漫游车上。
  
  1997年,韦恩斯在构思使用激光器探测月球期间,拜访了在某化学实验室工作的同学戴维·克莱莫斯(Dave Cremers)。克莱莫斯在实验室中制造了一个雪茄大小的由小型9伏特无线电电池供电的激光器,并用其指向房间另一侧的岩石。克莱莫斯按下电钮,激光器发出不可见的光束,在房间另一侧的岩石上激起闪光。该闪光是由激光能激发岩石上的原子而生成的离子气体或等离子体。一架指向发光等离子体的光谱仪根据不同波长记录光的强度,从而确定岩石的原子成分。
  
  研究人员使用激光器诱发等离子体的历史已有几十年了。而克莱莫斯应用如此低电压的能量源以及如此紧凑的硬件进行的演示给韦恩斯留下了深刻印象。韦恩斯认为将这种技术用在另一个星球的机器人上看起来可行。从这个想法出发,经过十余年的国际开发和试验,他们造就了于2010年9月安装在“好奇”号上的ChemCam。
  
  韦恩斯表示,激光引起的光谱分解是ChemCam的核心技术。其中的原理就是将大量的能量在几纳秒(十亿分之一秒)的时间内倾注在很小的面积上(每平方毫米几百万瓦特)。激起的闪光通过仪器上的望远镜传回ChemCam,望远镜通过光导纤维将光线向下引至三个位于漫游车内部的光谱仪。光谱仪将按照6144种不同紫外光、可见光和红外光波长记录光的强度。目标中不同化学元素会发出不同波长的光。如果岩石表面附有灰尘或已被风化,激光器可进行多次发射以去除那部分表层;从而再进行射击,以弄清岩石的内部构成。
  
  早期的火星漫游车任务缺乏确认像碳、氧、氢、锂、硼这些轻元素的方法,这些元素可以提供过去岩石形成或变化所处环境条件的线索。NASA的“勇气”号火星漫游车于2005年考察了叫做“科曼奇”(Comanche)的露出地面的岩层,研究小组又花了几年时间分析间接证据,才确信地推断出岩石中存在碳元素。而使用ChemCam进行观测即可直接探测出碳
  
  仪器上的望远镜性能因ChemCam摄像机的镜片而翻倍,该摄像机可通过一个一百万像素的探测机记录图片。望远镜摄像机将展示激光射击点的环境,也可与激光器分开使用。
  
    ChemCam团队中包括来自矿物学、地质学、太空生物学以及其它领域的专家,其中一些成员还参与了“好奇”号其它仪器的团队。目前,随着仪器安装到“好奇”号,试验在NASA的喷气动力试验室继续进行。“好奇”号漫游车以及火星科学实验室飞行系统的其它组件预计于2011年11月25日至12月18日之间发射。 (中国航天工程咨询中心  张贤明  许红英)

点评

光谱分析真是好东西  发表于 2011-5-18 14:20
 楼主| hkhtg090201 发表于 2011-1-20 08:03 | 显示全部楼层
仪器介绍:SAM(Sample Analysis at Mars)
-----漫游者将检测(火星)生命成分.

NASA Mars Rover Will Check for Ingredients of Life
Published by Klaus Schmidt on Wed Jan 19, 2011 9:23 am via: NASA Share

More share options

NASA, Mars, Mars Science Laboratory, Life, CuriosityPASADENA, Calif. — Paul Mahaffy, the scientist in charge of the largest instrument on NASA’s next Mars rover, watched through glass as clean-room workers installed it into the rover.


The specific work planned for this instrument on Mars requires more all-covering protective garb for these specialized workers than was needed for the building of NASA’s earlier Mars rovers.


Techncians and engineers inside a clean room at NASA's Jet Propulsion Laboratory, Pasadena, Calif., prepare to install SAM into the mission's Mars rover, Curiosity. Image Credit: NASA/JPL-Caltech

The instrument is Sample Analysis at Mars, or SAM, built by NASA’s Goddard Space Flight Center, Greenbelt, Md. At the carefully selected landing site for the Mars rover named Curiosity, one of SAM’s key jobs will be to check for carbon-containing compounds called organic molecules, which are among the building blocks of life on Earth. The clean-room suits worn by Curiosity’s builders at NASA’s Jet Propulsion Laboratory, Pasadena, Calif., are just part of the care being taken to keep biological material from Earth from showing up in results from SAM.

Organic chemicals consist of carbon and hydrogen and, in many cases, additional elements. They can exist without life, but life as we know it cannot exist without them. SAM can detect a fainter trace of organics and identify a wider variety of them than any instrument yet sent to Mars. It also can provide information about other ingredients of life and clues to past environments.

Researchers will use SAM and nine other science instruments on Curiosity to study whether one of the most intriguing areas on Mars has offered environmental conditions favorable for life and favorable for preserving evidence about whether life has ever existed there. NASA will launch Curiosity from Florida between Nov. 25 and Dec. 18, 2011, as part of the Mars Science Laboratory mission’s spacecraft. The spacecraft will deliver the rover to the Martian surface in August 2012. The mission plan is to operate Curiosity on Mars for two years.

“If we don’t find any organics, that’s useful information,” said Mahaffy, of NASA’s Goddard Space Flight Center. “That would mean the best place to look for evidence about life on Mars may not be near the surface. It may push us to look deeper.” It would also aid understanding of the environmental conditions that remove organics.

“If we do find detectable organics, that would be an encouraging sign that the immediate environment in the rocks we’re sampling is preserving these clues,” he said. “Then we would use the tools we have to try to determine where the organics may have come from.” Organics delivered by meteorites without involvement of biology come with more random chemical structures than the patterns seen in mixtures of organic chemicals produced by organisms.

Mahaffy paused in describing what SAM will do on Mars while engineers and technicians lowered the instrument into its position inside Curiosity this month. A veteran of using earlier spacecraft instruments to study planetary atmospheres, he has coordinated work of hundreds of people in several states and Europe to develop, build and test SAM after NASA selected his team’s proposal for it in 2004.

“It has been a long haul getting to this point,” he said. “We’ve taken a set of experiments that would occupy a good portion of a room on Earth and put them into that box the size of a microwave oven.”

SAM has three laboratory tools for analyzing chemistry. The tools will examine gases from the Martian atmosphere, as well as gases that ovens and solvents pull from powdered rock and soil samples. Curiosity’s robotic arm will deliver the powdered samples to an inlet funnel. SAM’s ovens will heat most samples to about 1,000 degrees Celsius (about 1,800 degrees Fahrenheit).

One tool, a mass spectrometer, identifies gases by the molecular weight and electrical charge of their ionized states. It will check for several elements important for life as we know it, including nitrogen, phosphorous, sulfur, oxygen and carbon.

Another tool, a laser spectrometer, uses absorption of light at specific wavelengths to measure concentrations of selected chemicals, such as methane and water vapor. It also identifies the proportions of different isotopes in those gases. Isotopes are variants of the same element with different atomic weights, such as carbon-13 and carbon-12, or oxygen-18 and oxygen-16. Ratios of isotopes can be signatures of planetary processes. For example, Mars once had a much denser atmosphere than it does today, and if the loss occurred at the top of the atmosphere, the process would favor increased concentration of heavier isotopes in the retained, modern atmosphere.

Methane is an organic molecule. Observations from Mars orbit and from Earth in recent years have suggested transient methane in Mars’ atmosphere, which would mean methane is being actively added and subtracted at Mars. With SAM’s laser spectrometer, researchers will check to confirm whether methane is present, monitor any changes in concentration, and look for clues about whether Mars methane is produced by biological activity or by processes that do not require life. JPL provided SAM’s laser spectrometer.

SAM’s third analytical tool, a gas chromatograph, separates different gases from a mixture to aid identification. It does some identification itself and also feeds the separated fractions to the mass spectrometer and the laser spectrometer. France’s space agency, Centre National d’Études Spatiales, provided support to the French researchers who developed SAM’s gas chromatograph.

NASA’s investigation of organics on Mars began with the twin Viking landers in 1976. Science goals of more recent Mars missions have tracked a “follow the water” theme, finding multiple lines of evidence for liquid water — another prerequisite for life — in Mars’ past. The Mars Science Laboratory mission will seek more information about those wet environments, while the capabilities of its SAM instrument add a trailblazing “follow the carbon” aspect and information about how well ancient environments may be preserved.

The original reports from Viking came up negative for organics. How, then, might Curiosity find any? Mahaffy describes three possibilities.

The first is about locations. Mars is diverse, not uniform. Copious information gained from Mars orbiters in recent years is enabling the choice of a landing site with favorable attributes, such as exposures of clay and sulfate minerals good at entrapping organic chemicals. Mobility helps too, especially with the aid of high-resolution geologic mapping generated from orbital observations. The stationary Viking landers could examine only what their arms could reach. Curiosity can use mapped geologic context as a guide in its mobile search for organics and other clues about habitable environments. Additionally, SAM will be able to analyze samples from interiors of rocks drilled into by Curiosity, rather than being restricted to soil samples, as Viking was.

Second, SAM has improved sensitivity, with a capability to detect less than one part-per-billion of an organic compound, over a wider mass range of molecules and after heating samples to a higher temperature.

Third, a lower-heat method using solvents to pull organics from some SAM samples can check a hypothesis that a reactive chemical recently discovered in Martian soil may have masked organics in soil samples baked during Viking tests.

The lower-heat process also allows searching for specific classes of organics with known importance to life on Earth. For example, it can identify amino acids, the chain links of proteins. Other clues from SAM could also be hints about whether organics on Mars — if detected at all — come from biological processes or without biology, such as from meteorites. Certain carbon-isotope ratios in organics compared with the ratio in Mars’ atmosphere could suggest meteorite origin. Patterns in the number of carbon atoms in organic molecules could be a clue. Researchers will check for a mixture of organics with chains of carbon atoms to see if the mix is predominated either by chains with an even number of carbon atoms or with an odd number. That kind of pattern, rather than a random blend, would be typical of biological assembly of carbon chains from repetitious subunits.

“Even if we see a signature such as mostly even-numbered chains in a mix of organics, we would be hesitant to make any definitive statements about life, but that would certainly indicate that our landing site would be a good place to come back to,” Mahaffy said. A future mission could bring a sample back to Earth for more extensive analysis with all the methods available on Earth.

JPL, a division of the California Institute of Technology in Pasadena, manages the Mars Science Laboratory mission for the NASA Science Mission Directorate, Washington.
zhang 发表于 2011-1-21 22:34 | 显示全部楼层
本帖最后由 zhang 于 2011-1-21 22:36 编辑



MSL 项目重要里程碑:着陆系统投放测试

http://www.jpl.nasa.gov/video/index.cfm




造了 2 辆, 实际飞行的和动力学测试的。
 楼主| hkhtg090201 发表于 2011-2-2 15:26 | 显示全部楼层
美下一代火星车项目成本升至25亿美元
2011年02月02日 10:54  新华网

  新华网华盛顿2月1日电(记者任海军)美国航天局官员日前指出,美方原定今年11月发射下一代大型火星车——“火星科学实验室”,但该项目额外需要8200万美元才能在预定升空日期前完成必要测试。这一项目的成本也由此攀升至25亿美元,成为迄今最昂贵的火星探测项目。

  美国航天局行星科学部门负责人吉姆·格林对航天局顾问委员会说,新增资金的原因在于新型火星车的机动系统、航空电子设备、雷达、钻孔及样品分析设备的研发过程出现问题

  格林表示,资金对该火星车项目来说非常紧迫,只有资金到位,研发和测试问题才能解决,并使火星车发射不会错过今年11月25日开始的为期三周的发射窗口期。

  美国航天局指出,这辆新型火星车能在火星表面着陆探测,有助于探究火星过去或现在是否存在适宜生命存活的环境。与目前在火星上的“勇气”号和“机遇”号火星车相比,新型火星车的个头要大得多,大约相当于一辆小型运动型多功能车,其携带的探测设备更多、更先进,在火星表面的连续行驶能力更强。

  此前由于资金和研发问题,这辆新型火星车的发射已被推迟了两年。按目前计划,该火星车将于今年11月从佛罗里达州卡纳维拉尔角发射场升空。
zhang 发表于 2011-2-19 23:54 | 显示全部楼层
本帖最后由 zhang 于 2011-2-19 23:56 编辑

http://mars.jpl.nasa.gov/msl/new ... ews&NewsID=1107

Advanced NASA Instrument Gets Close-up on Mars Rocks

关于 MSL 的 Alpha Particle X-Ray Spectrometer (APXS)


http://mars.jpl.nasa.gov/msl/

MSL 的主页太帅了!
 楼主| hkhtg090201 发表于 2011-2-20 07:44 | 显示全部楼层
很久以前,NASA 就宣布说:要开会决定MSL在火星的降落位置(3选1?),经过2年的推迟,今年推迟的可能性不大了,也不知道降落位置选定了否?
zhang 发表于 2011-2-20 14:24 | 显示全部楼层
回复 79# hkhtg090201


    http://msl-scicorner.jpl.nasa.gov/landingsiteselection/

The final site and backup will be selected in Spring 2011 after an additional community workshop and subsequent analyses by the MSL Project, science teams, and NASA officials.

还没有选定,应该快了。四个备选落点是

Eberswalde Crater        23.86S, 326.73E        -1450 m
Gale Crater        4.49S, 137.42E        -4451 m
Holden Crater        26.37S, 325.10E        -1940 m
Mawrth Vallis        24.01N, 341.03E        -2246 m
sarikka 发表于 2011-2-24 20:48 | 显示全部楼层
SAM终于要登上火星使用了,其中的微型气相色谱仪式法国人制造的
zhang 发表于 2011-3-3 21:13 | 显示全部楼层
本帖最后由 zhang 于 2011-3-3 21:14 编辑





Curiosity 经受考验,振动测试的强度是 1.5 G,

频率  10 - 400 Hz

接下来是真空室热环境测试。

Rover 处于发射配置:肚皮朝上。
您需要登录后才可以回帖 登录 | 注册会员

本版积分规则

QQ|申请友链|旗下论坛|小黑屋|手机版|航空航天港 ( 豫ICP备12024513号 )

GMT+8, 2018-10-22 20:35 , Processed in 0.352007 second(s), 20 queries , Gzip On.

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表