航空航天港

 找回密码
 注册会员

QQ登录

只需一步,快速开始

查看: 1922|回复: 9
收起左侧

[其他主题] 前沿科技学科/热门科技 - 生命医学之 - 基因科学

  [复制链接]
hkhtg090201 发表于 2016-6-22 09:01 | 显示全部楼层 |阅读模式

对本站感兴趣的话,马上注册成为会员吧,我们将为你提供更专业的资讯和服务,欢迎您的加入!

您需要 登录 才可以下载或查看,没有帐号?注册会员

x
本帖最后由 hkhtg090201 于 2016-6-22 09:04 编辑

   克隆,人造人等,非常的不可思议,当然, 所谓会者不难,难者不会.涉猎一些吧.



连接:
    中国学者研发出国际一流基因编辑技术(NgAgo-gDNA)
     http://bbs.9ifly.cn/forum.php?mod=viewthread&tid=68866
     (出处: 航空航天港)

 楼主| hkhtg090201 发表于 2016-6-22 09:02 | 显示全部楼层
遗传学家:基因编辑技术可改变生命及地球所有事物
2016年06月22日
http://tech.sina.com.cn/d/f/2016-06-22/doc-ifxtfrrc4096774.shtml


一项可以改变未来一切的伟大技术

  新浪科技讯 北京时间6月22日消息,据国外媒体报道,“CRISPR”是一组名词的首字母缩写,其全称为“成簇的规律性间隔的短回文重复序列”。这项技术可以对基因组进行编辑,是一种可以改变DNA的生物学系统。因此,世界许多遗传学家和生化学家普遍认为,这是一项可以改变所有人生命及地球上一切事物的技术,也是一项可以改变未来一切的伟大技术。不过,该技术也面临许多伦理问题

  “CRISPR”技术发现于2012年,发现者为美国加州大学伯克利分校生物化学家詹尼弗-杜德纳教授。杜德纳教授当时正带领一支科研团队研究细菌是如何对抗病毒感染的。如今,杜德纳教授和她的合作伙伴埃马纽埃尔-卡彭蒂耶已经进入世界最具影响力的科学家之列。他们发现的这一系统可以被生物学家用来对DNA进行精确的修改。杜德纳介绍说,“自四年前我们公布这一发现后,世界上许多著名实验室已经采用这项技术并准备应用于动物、植物、真菌以及其它细菌身上,基本上涵盖了他们研究领域内任何种类的有机体。”

  当细菌遭受攻击时,它们会产生一些基因物质来匹配入侵病毒的基因序列。这种基因物质含有一种关键的蛋白质Cas9,它们可以吸附于病毒的DNA上,并破坏它,让它失去功能。科学家现在已经可以通过同样的程序对DNA进行插入、删除和修补。此外,科学家们还可以利用这项技术对细胞中组成DNA代码的无数化合物进行深入研究。最重要的是,这项技术不仅仅见效快,而且花费较少。因此,它可以促进各项相关研究的发展,比如人类疾病在动物身上进行的基因修正,可以导致疾病或获得免疫的DNA突变的发现等。

  既然这项技术如此先进,那么有效的疗法究竟何时才能出现?由于这项技术出现仅有4年时间,因此对病患真正的临床试验尚未开始,但已经有许多人将其列入计划任务中。比如,美国波士顿生物医药公司Editas Medicine计划于2017年采用基因编辑疗法对先天性黑蒙症进行临床试验,这是一种罕见的视网膜疾病,基因突变可能导致眼睛中的感光细胞逐渐消失。近年来出现的多家生物科技公司也希望能够采用“CRISPR”技术进行临床治疗。他们认为,“CRISPR”技术可以用于提高T细胞的功能,这样免疫系统可以更好地识别和杀死癌细胞。血液和免疫系统的疾病也有望通过这项技术得到治疗。

  不过,“CRISPR”技术仍然存在专利纠纷,纠纷的一方是杜德纳研究团队,而另一方则是来自波士顿的一个科研团队。当然,专利纠纷并不能阻止“CRISPR”技术的学术研究,而且该技术必将带来巨大的经济效益。两种早期出现的基因编辑技术已经进入临床运用。去年,一项被称为“TALENs”的技术被伦敦大奥蒙德街医院用于治疗癌症。雷拉-理查德兹患有严重白血病,此前所有的治疗均以失败而告终。这位被判治疗无望的英国女婴接受基因编辑过的血液细胞后生命开始复苏,最后检查证实其体内癌细胞已被消除。

  世界第一例基因编辑试验发生于美国加利福尼亚州,这项试验采用的则是另一种不同的技术--ZFNs。大约80位HIV病毒携带者被提取血液中的免疫细胞。科学家然后删除其中一种被称为“CCR5”的基因,HIV病毒正是通过这种基因进入细胞的。这种疗法是基于一种罕见的基因突变,即一些人对艾兹病有先天的免疫力。52岁的马特-查普尔是志愿者之一,他也是一名HIV病毒携带者。自从免疫细胞得到基因编辑后,他已经有两年时间不再需要抗逆转录病毒治疗。尽管还有一些小型试验仍然谨慎地对待可能的治疗效果,但毫无疑问前景仍然是比较乐观的。美国加州桑加莫生物科技公司首创了这种艾兹病疗法,这是唯一一家拥有ZFNs技术治疗许可证的机构。这家公司还计划对血友病进行临床试验,并计划对β地中海贫血疗法进行研究。

  基因编辑技术最具争议性的一点,就是有人担心这可能会引起种系的变化,即DNA变化可能会遗传给下一代。从理论上讲,携带亨廷顿氏舞蹈症基因的胚胎是可以进行DNA修正的,基因编辑也可以带来定制婴儿。至今还没有任何科学家建议对人类胚胎进行基因编辑。不过,中国一些研究团队已经在做一些基础性研究,英国成为首个正式批准可以对人体胚胎进行基因编辑的国家(仅限于科学研究)。

  伦敦弗朗西斯-克里克研究所将成为欧洲最大的生物医学实验室,同时它也是一家基因编辑技术研究中心。该研究所科学家凯茜-尼亚坎带领一个研究团队计划采用“CRISPR”技术对人类胚胎一些关键基因进行编辑,试图发现可能导致许多妇女习惯性流产的基因缺陷。尼亚坎表示,“我希望这项技术能够让我们真正地认识人类早期的发育,能够帮助我们改进试管受精技术,从而确定那些能够继续发育并茁壮成长的胚胎,最终让这些胚胎成长为健康的婴儿。”

  不过,这项技术也面临许多伦理问题。

  美国旧金山遗传学与社会中心专家马西-达尔诺夫斯基认为,人类胚胎编辑技术研究可能得不到合理的控制,世界某些地方随便一家实验室可能会随意制造出首个基因编辑婴儿。基因编辑研究领域的一些重要科学家也在担心,这项技术可能会被滥用,比如用于优生,从而造成遗传上的不平等。杜德纳教授认为,虽然很难控制“CRISPR”技术的使用,但是可以找到一个让大多数人认可的合理运用该技术的做法。(彬彬)

zmic 发表于 2016-6-22 09:21 | 显示全部楼层
  基因技术到现在不知有多少真正投入使用,
  所谓的伦理问题,恐怕核心还是种族主义,一旦真的做特定改变,怕3K党之流蠢蠢欲动了吧
 楼主| hkhtg090201 发表于 2016-6-22 14:42 | 显示全部楼层
PS: 这个和主题不太相符,不过先放在这里.
  
--------------------
科学家:人类或将很快实现另类形式的“永生”
   腾讯科学2016年06月22日


腾讯科学讯 据英国《每日快报》报道,物理学家Michio Kaku博士近日声称,技术的进步将使人们能够在死亡前将他们的性格下载到电脑上来创造一个“阿凡达”化身。这一理论提出,这个化身将拥有人类的记忆和个性,而且通过人工智能人们将能够继续与其进行交流,就好像他们还活着一样。

一旦人们死亡,这个阿凡达化身将被激活,它将拥有视觉感知,并且能够与那些活着的亲属进行交流。在未来,他可以从电脑上投射为全息图,甚至是一个三维立体的机器人形态与你进行交互作用。

Kaku博士称:“你可以想象一下在你所爱的人去世后仍然能够与他们进行交流,如果将他们的性格下载到电脑上创造一个阿凡达化身的话,就可能实现这一想法。你可以与他们继续进行交流就好像他们还活着一样。事实上他们将变得不朽。”

有科学家提出质疑,把人类大脑转变成为一台电脑是否现实,但是Kaku博士并非是首位提出使用人类替身实现不朽这一想法的人。俄罗斯亿万富翁Dmitry Itskov就曾声称,他将在30年内让人类永生变成可能,他的想法是将人类大脑上传到电脑中。

现年35岁的Itskov先生创建了一个团队,试图通过一个可行的项目来绘制人类大脑并将其人工储存起来。他声称:“在未来30年里,我很确定我们能够永生。我百分百确信这一想法将实现,否则我不会开始这个项目。”

他创立的这个“2045阿凡达不朽项目”计划在2020年前打造出全功能的阿凡达替身,人类将能够通过大脑控制一个机器人替身。五年后,这个团队将创造另外一种形式的阿凡达替身,它将能够装上人类大脑,人类死亡后可以将大脑转移到替身身上。到2035年科学家们希望打造出一种能够拥有人造大脑和人类性格的阿凡达替身。(过客/编译
 楼主| hkhtg090201 发表于 2016-6-23 14:23 | 显示全部楼层
基因测序未来只需一千块!精准医疗开启看病治病新时代
2016年06月23日 新浪科技

出品:中国科普博览 SELF格致论道讲坛

  导语:随着历史的变迁,导致人类非自然死亡原因也在不断变化:1900年以前,主要是饥饿、战乱;从1901年到1950年,则主要是感染性疾病;从1951年到现在,则主要转变为心脑血管疾病、癌症;科学家们预测,在未来,神经系统疾病将成为影响人类非自然死亡的最主要原因……伴随这个发展过程,人类医疗水平也不断发展革新,那么基于基因组研究的精准医疗未来将扮演什么样的角色?来自中国科学院北京基因组研究所的陈科博士,在SELF讲坛上为我们做出解答。

  小时经常会有人说,陈科你长得这么像你爸爸;也会有人说,陈科,你像你妈妈多一点。那为什么会这样呢?学过生物的人都知道,因为我们的DNA,也就是碱基,一半来自爸爸,一半来自妈妈。毫无疑问,我们的面貌特征是他们结合以后的体现。实际上,不仅仅体现在面貌上,我们的身高,我们的胖瘦,还有我们自己是否容易患上某种疾病,都跟我们的基因是密切关联的。

  我们来看一张万人迷的照片。我想大部分人对他都不会陌生,没错,他就是贝克汉姆。他从我们基因组学的术语来讲是由1×10^14个细胞组成。每一个细胞从外到内,分别由细胞膜、细胞浆和细胞核三大部分组成。

  所谓的细胞核,顾名思义就是核心,是细胞最主要的成分,细胞是构成生命世界中每一个有机体的基本单位。那么细胞的细胞核再往下分是什么样的状态呢?这就是刚刚黎耕老师讲到的,1953年的时候人类发现DNA双螺旋结构。所以由大到小观察,从细胞核、染色体,再到DNA。DNA是最基本的单元,我们称之为碱基,它有ATGC四种类型。换句话说,我们是由这四种结构的DNA构成的。3.2×10^9个碱基对,这就是我们人类基因组的DNA数目。

  刚刚是从宏观到微观,从贝克汉姆到碱基DNA来进行观察;再反过来看看是怎样的过程?首先是四种DNA,最基本成分叫ATGC,他们形成一定的序列;再往上,有功能的序列我们称之为基因,基因与包含在基因周边的蛋白质,我们把它称为基因组;基因组构成了细胞核,细胞核是细胞的主要成分,细胞往上走,形成了器官,形成了系统;比如说我们的呼吸系统,血液系统,消化系统;到最后,贝克汉姆组装完毕,这就是由微观到宏观的过程。

  这个过程的奇妙之处在哪儿呢?比如大家可能会问基因是什么、有什么作用?我们的生物学教科书里面有这样一个所谓的“中心法则”,从碱基或者说DNA开始,到RNA,到蛋白质,这个过程最终的目的是形成蛋白质。孩童的微笑,情侣之间的眉目传情,我在这里讲,您在下面听,所有的动作都是我们的蛋白质在执行功能。

  DNA如此重要,它被称之为我们生命的源代码,这个源代码给予我们所有的活动,这些活动都能够回溯到DNA上去,因此我们可以从DNA中找到某种问题的原因,来解释它。

  正是因为基因组的重要性,人类科学家开始联合起来进行研究。在上个世纪90年代,确切来讲是1990年,以美国和英国为首的遗传学领域科学家们联合起来发起了人类基因组计划,这个计划简称叫HGP,由六国科学家组成。

  当时计划用15年的时间,测序一个人的基因组。为什么要花这么长的时间呢?因为我们基因组的大小是3.2×10^9个序列,而且其中75%以上是基因间区。换句话说它里面有很多的重复序列,这种重复序列的存在导致了我们想把它从3.2×10^9的过程完全弄清楚是不太容易的。

  人类基因组计划从1990年开始启动,到2000年,美国总统先生说我们完成了人类最伟大的计划之一,再到现在,这个版本已经更新到了第38版,最新更新时间是2013年12月。我们预计它的更新还会持续,只能说更新幅度越来越小,我们离真相越来越近。

  自从人类基因组计划启动之后,相关测序产业也是蓬勃发展,直接作用就是我们可以了解更多物种的基因组是什么样子。到现在为止,有将近一万个物种已经有了自己的基因组。

  不做基因组的人可能不太清楚,总统先生和黑猩猩有多少相似度?刚才猜测60%、70%、80%、90%的人都有,事实上是99%。那么从基因组学这个角度来看,当我们认为自己多么与众不同时,多少显得有点滑稽。我们和猩猩的差别其实只有1%。而且,从更大范围来看,我们人类的基因组并不是最大的,我们的基因数目也不是最多的;最大的基因组来自于日本一种植物;这个表格中,平常不起眼的玉米,大概有5万个左右的基因,多于人类的2万个基因。中国人和美国人的基因相差只有0.1%,而我和你99.99%的基因都是一样的,差别不大。但是,回过头来要记住,因为它的基数是3.2×10^9,你去乘基数之后,也就得到了10^4到10^5之间的差异。

  我们经常会听到,不管是肿瘤也好,糖尿病也好,心脑血管疾病也好,经常都可以找到基因突变跟某一个疾病有关联的。但是请大家一定注意,很多情况只是一种关联,关联不是因果。因果是说,我和我老婆的存在,导致了我女儿的出生;而关联不是因果关系,只是一个随带的关系。比如我女儿碰巧上了这家幼儿园,她上这个幼儿园是一个关联,而不是因果。就像前面提到的一样,基因突变很多时候是一个关联;它并不可怕。而且我刚刚说了,哪怕我们99.99%相似,只有万分之一的不同,但是基数足够大。每个人,比如我们从爸爸妈妈继承的基因突变,每一代大概是72个,这是有据可循的,而且这72个里面大部分来自于父亲的贡献,有的遗传学家就此认为,其实进化的动力来自于父亲,因为它显现了更多突变,更有可能给后代带来基因的多样性,更有可能使得后代与众不同。

  正是因为基因组学的如此重要,在人类基因组计划之后,全世界范围的科学家并没有放弃追逐。当时的人类基因计划研究对象只有一个人,但是一个人太少了,每个人都不一样,因此便有了后来的千人基因组计划,我们检测一下黄钟人,再测一下黑色人种,白色人种,每一个人种,不管是中国人,还是日本人,虽然差别可以缩小到十万分之一,但是它的数目还是足够大的。

  所以千人基因组计划出台后,我们今后在使用的时候,在序列比对的时候,可能不用再去比人类基因组计划中的HG38(人类基因组计划的第38版),而是比对我们自己的,比对我们中国人群的,比对我们中国南方人群里面某一个亚系的人群基因组,这样才更有可能找到:我突变了什么?我哪种疾病爆发的可能性更大?这就是千人基因组计划的初衷。

  后来,为了把一直困扰人类的癌症解释清楚,世界范围内的两大组织,分别是加拿大领衔的国际癌症基因组联盟和美国人领衔的癌症基因组图谱,用基因组学方法去测序某一个类别的肿瘤。

  比如说肾癌,他们选择了500多名肾癌患者来测序它的基因组,分析哪些肾癌产生了突变,哪些突变跟愈后相关联,哪些药物针对哪些突变,然后对患者后续治疗做指导。

  美国人领衔的计划(TCGA)在去年结束,加拿大领衔计划(ICGC)现在还没有结束。但是毫无疑问,不管是白种人,黑种人,还是我们黄种人,我们人类最主要的肿瘤基本上都测序结束了,这就导致大量数据的产生。

  我们知道一个U盘大概有十个G,乘以1024倍是10个T,再乘以1024倍是10个P。而我们研究所里面数据储存远远高于这个,因为数据无时无刻不在产生,这样的数据量意味着我们需要更大容量,需要更大的容器来把它装下来,不然我们没有办法去比对它,没有办法很好地使用它。而这也导致了所谓的生物大数据的出现,大到了T级,大到了P级。

  在大数据的应用方面,精准医学的出现毫无疑问对大数据是最好的回馈。因为花了那么多的钱,十几个国家的科学家投入研究,十几年的时间,数百亿美金的投入,对我们人类产生了如此多的数据,我们不用它岂不变成了垃圾?其实精准医学并不仅仅是美国总统在2015年和2016年曾经提到,在这之前,在我们中国,在我们中国科学院,在美国以外的地方,很早就有人提出来精准医学,因为需要针对每个人的基因背景,针对每个人蛋白背景来做个性化的裁减,来做个性化的治疗,这就是所谓的精准医疗,形象点来说,就是哪里坏了修哪里,这是最好的想法。

  这是精准医学在癌症领域的应用。我展示的这个流程图是以肝癌为例的整个精准医疗的流程。术前影像显示有个肿块,影像结果出来之后,大部分患者会选择做手术。手术之后我们会进行一个病理学的判断,诊断肝癌到哪一级,哪一期;并且对这样的手术样本进行基因组学建库,建库以后进行基因组学测序,测序之后进行分析,分析以后会由董事会(咨询委员会)坐下来讨论这个患者的基因背景是什么样的,哪些突变可能是致病的,哪些不是主要的突变,董事会(咨询委员会)里面会包含至少四类人员,包括生物信息学家、遗传学家、临床大夫、病理医生。讨论结束后,我们针对这些可用的突变频谱进行验证,验证结束之后我们会对患者进行报告。比如肝癌,已有的病理学分析到了哪个层面,现在基因组分析到了哪个状态,现在有哪些药可以用,哪些是针对患者的。这样的报告就是精准医学最直接的体现。

  在国外,精准医疗已经在顶尖医院应用了大概5年左右的时间,但是精准医疗并没有完全的铺开,我们中国才刚刚起步。但是中国人从来都是勤奋的,国外需要一个月完成的流程,在我们中国10天就可以搞定。

  讲一个故事,这个故事的主角是华盛顿大学的一个助理教授,他自己做白血病研究。不幸的是,2003年的时候,他自己得上了白血病。按照以往的方法进行了化疗,但是5年过后病情复发,他移植了弟弟的骨髓,可是好景不长,三年之后他再次复发,而这个时候癌症基因组学的进展处在一个高峰阶段,癌症基因组学发现他有一个基因异常高表达,而且靶向药物可以治疗这个异常高表达基因。这里有一点特别强调的是,这个靶向药物其实是治疗晚期肾癌的。换句话说,他用治疗肾癌的药物治疗了白血病,那么现状如何呢?最近的资料显示他还活着。这是一个幸运儿,从开始治疗到现在已经过去了十二三年的时间,对于白血病患者来说,这是一个奇迹,对于肿瘤基因组学应用来说也是一个非常令人振奋的消息。

  另一个例子与糖尿病有关。这位长者是斯坦福大学的教授,他自己也是做遗传学研究的,他的故事于2012年发表在Cell期刊--这是我们生物学研究人员最梦寐以求发文章的地方,可以理解为顶级期刊。他的故事讲到,在600多天的时间里,他分20个时段采集自己的血液做基因组的分析,他发现自己存在二型糖尿病的风险,这个风险值大概0.5左右,这个时候他就有点着急了,就像之前我们在网络上看到过的那样,安吉丽娜·朱莉因为家族罹患乳腺癌和卵巢癌的风险过大,就把乳腺全部切除了。当这位教授知道自身血糖升高之后,就开始进行行为干预,此后血糖降了下来。对于他来说精准医学是一个成功案例,因为它成功的延缓了自己糖尿病的进展,很有可能让自己的糖尿病发生时间延后,甚至不发生。

  这是两个经典例子:一个是癌症,一个是糖尿病。这么好的例子,我们大部分人支付的起吗?答案是肯定的。2000年的时候,每个人做基因组测序的花费是27亿美金,到了今天变成了一万元人民币,时间成本和人力成本直线式下降,13年变成13天,人力成本从三千人变成了三到五个人就能够搞定。所以现在一万块钱就可以测一个人的基因组,在今年年底这个费用还会继续下降,业界最终目标是一千块钱测一个人的基因组。也许5年左右的时间,我们可以用手机APP查看自己的基因组,享受生物大数据、基因组学数据、精准医疗带给大家的普惠,当然,在一定程度上,先期时候还是需要付费的。

  正是因为生物数据的如此复杂多样,它的层次除了DNA,RNA,还有蛋白质,还有更多层面,这么多的数据,作为一个大夫来讲不可能完全记得的。对于我们绝大部分民众来说也没有必要记这个事情,因为有人替我们去做。

  以IBM为代表的商业机构推出了所谓的电脑医生平台,这个平台最大的特点就是在15秒之内搜索百万级别的文献,并给出一个相对合理的治疗方案。其中诊断阶段,治疗阶段,每个方案都有参考文献,不是凭空而来的,够强大吧?可能有人会担心,最后我们去医院看病可能医生不见了,可能被电脑替代了。事实上我可以很明确的告诉大家,不论今后怎么变,大夫必不可少,因为电脑所做的事情虽然如此强大,能够在15秒内给出答案,但是这个答案仍基于已有的数据库,它没有推断的能力。

  当然,如果说基于AlphaGO能够击败李世石这件事情,可以认为人工智能存在无限可能,但是至少从目前来看,电脑医生只是一个供人们搜索和检索的数据库,而不是一个具有推动、推算、推演能力、有逻辑思维能力的真正的人。所以大家想象的,到医院去对着一台机器说话,然后他告诉我去哪里检查,然后给我抽血、做按摩、做手术,这还需要很长的时间,但不能说绝对没有可能。

  既然精准医疗是如此好的东西,为什么没有广泛推广?除了之前提到的费用原因,就我们国内状况来看,还有以下几个方面是需要进一步打破壁垒。

  因为精准医疗是新事物,所以在监管层面还有很多东西没有理顺,没有一个真正条文规定告诉该怎么做,这是第一个方面。

  第二个方面,对于患者来说,或者是对患者家属来说,他们非常想参与进来,但他们不知道有什么途径可以了解相关的信息。比如我把测序仪买回来,测序结果出来以后,医院也不会分析;如果我们依靠第三方机构,问题又来了,第三方机构鱼龙混杂,难以取信;甚至我们经常可以在街边巷尾看到这样的兜售行为,说给你家孩子测个基因,看看他未来适合做科学家、艺术家,还是适合当教师。这些到现在为止,因为我们的数据库不够强大,市面都是一些虚假的广告。

  第四个层面,是目前还没有一家第三方机构能够把我前面提到的四种认证专家集中起来做这件事情,因为这个行业还处于起步阶段,还有很多需要完善的地方,但是曙光已经出现,今后的可能性很大。

  我们人类从有史以来,死亡原因一直在变迁,100多年前我们绝大部分的祖先都是因为饥饿和战乱而死亡,到了上个世纪上半叶,感染性疾病,西班牙流感,给人类留下巨大创伤,我们今天读教科书的时候仍然心有余悸;到了上个世纪下半叶,心脑血管疾病,癌症成为死亡的主要原因,有一些科学家医学预测,当我们解决这些问题之后,在即将到来的未来,神经系统疾病将成为我们人类即将消亡的原因。基因组学能够解决所有问题吗?答案是否定的。因为我们每个人的基因只有一套,但是基因上面所修饰的,所依附的,所被黏附在上面的分子是多种多样的。

  时至今日,生命的天书已经被打开了,我们期待它给我们带来不一样的应用,最终造福于我们人类的健康,为我们人类谋更大的福祉,谢谢大家。谢谢中科院青促会对我个人成长的资助!

标签: 基因测序医疗看病SELF讲坛

天外新村 发表于 2016-9-22 19:17 | 显示全部楼层
超越韩春雨?新一代基因编辑技术在南京大学问世

http://news.sciencenet.cn/htmlnews/2016/9/356907.shtm
内切酶经过改造可以成为强大的DNA编辑工具,比如ZFN、TALEN、风头正劲的CRISPR–Cas系统和引起争议的NgAgo技术。不过这些技术都是通过序列识别来实现靶向切割的,会受到序列偏好的限制。

南京大学的研究团队九月十五日在Genome Biology杂志上发表了一项突破性成果。他们开发了结构引导的DNA编辑新技术,不再受到靶序列的限制。这篇文章的通讯作者是南京大学医学院附属金陵医院的周国华(Guohua Zhou)研究员、南京大学模式动物研究所的赵庆顺(Qingshun Zhao)教授和朱敏生(Minsheng Zhu)教授。

FEN1(flap endonuclease-1)是一种识别3’ flap结构的内切酶。研究人员将FEN1与Fn1(Fok I)的剪切结构域结合起来,制造了结构引导的DNA编辑工具——SGN。SGN(structure-guided endonuclease)能够识别靶序列与向导DNA(gDNA)形成的3’ flap结构,通过Fn1二聚化对靶序列进行切割。研究显示,一对gDNA可以引导SGN在斑马鱼胚胎的基因组中正确切割报告基因和内源基因。这项研究指出,SGN能特异性识别和捕获目标,准确切割任何DNA序列。



CRISPR–Cas原本是细菌抵御病毒的重要武器,现在它已经成为了基因组编辑的强大工具。CRISPR–Cas不仅操作简便,而且还有着很强的可扩展性,被广泛应用到各种生物中,催生了大量的研究成果。CRISPR激活(CRISPRa)和CRISPR抑制(CRISPRi)特别适合分析非编码RNA的具体功能。前不久,The Scientist杂志联合CRISPR的开发者和使用者共同编写了使用CRISPRa和CRISPRi的入门指南,帮助研究者们更好的研究和调节基因组的编码和非编码区域。

Molecular Cell杂志此前曾推出技术特刊,介绍了生物学领域近年来出现的新兴技术。其中一篇文章对RNAi、TALEN和CRISPR这三大基因组编辑工具的核心技术进行了全面比较,并且为基因功能研究提供了一份实用指南。研究者们可以根据自己的需要,简单直观的找到最适合自己的技术。

今年五月,河北科技大学的生物学家韩春雨(Chunyu Han)在Nature Biotechnology杂志上发布了一种可以替代CRISPR–Cas的基因组编辑技术,NgAgo。他的研究团队证实,NgAgo酶可以实现DNA引导的哺乳动物基因组编辑。这项成果一经发表就引起了国内外的强烈关注,至今争议不断。

作者简介:

周国华 1998年5月获清华大学理学博士学位。先后在日本留学5年,从事基因检测新技术的研究。现任南京大学医学院附属金陵医院(南京总医院)药理科主任,研究员,主任药师。中国药科大学、南方医科大学、南京医科大学博士生导师。为江苏省“科教兴卫工程”药学领域唯一的领军人才和创新团队。

赵庆顺 南京大学遗传学与发育生物教授、博导 1990.7-1992.7 南京大学 生物系 助教;1992.7-1996.7 南京大学 生物科学与技术系 讲师;2001.7-2003.2 杜克大学医学中心(Duke University Medical Center, Durham, North Carolina, USA)分子遗传学和微生物学系 博士后;2002.8-2006.6 南京大学 模式动物研究所 副教授;2006.6-现在 南京大学 模式动物研究所 教授 (2007年4月起聘为博导)

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册会员

x
天外新村 发表于 2016-10-15 10:37 | 显示全部楼层
西安交大观测到基因组中的“暗物质”

http://news.sciencenet.cn/htmlnews/2016/10/358173.shtm
本报讯(通讯员刘昱晗 记者张行勇)10月6日,西安交通大学电信学院教授叶凯等在人类基因组变异研究领域取得阶段性突破结果,成果发表于《自然—通讯》。该研究具备的一套较为完整的基因组变异集合,为人们提供了研究大型基因组结构变异影响的可能性。

研究表明,在鉴定出的190万个大型的基因组变异中,包括大片段DNA缺失、跳转DNA或者凭空出现的DNA大片段。这一些变异也出现在基因组的重要功能区域,比如说编码关键蛋白质的编码区,从而使得产生的蛋白质的功能受到损害。

但人类很多大的基因组结构型变异往往又不在基因的编码部分,这一些变异的功能影响往往又是难以预测的,而变异却可能决定人们是否容易患某些疾病。例如,研究人员发现全新的“ZNF”基因,一半的荷兰个体中都有。目前该基因和其他发现的“暗物质”,都已经保存到国际数据库中,可供世界各地的科学家们研究,从而更好地了解人类疾病。
天外新村 发表于 2016-12-2 18:13 | 显示全部楼层
我国科学家发明病毒直接转化疫苗新技术

http://news.sciencenet.cn/htmlnews/2016/12/362454.shtm
12月2日,国际顶级期刊《Science》发表了北京大学药学院天然药物及仿生药物国家重点实验室主任周德敏教授/张礼和院士课题组的突破性研究进展,他们以流感病毒为模型,发明了人工控制病毒复制从而将病毒直接转化为疫苗的技术,该研究成果被称为是一种“革命性”或“颠覆性”的发现。周德敏博士生司龙龙和徐欢为该论文的共同第一作者。题为“Generation of Influenza A Viruses as Live but Replication-Incompetent Virus Vaccines”(“ 制备复制缺陷的活流感病毒疫苗”)。

据周德敏介绍,流感、艾滋病、SARS和埃博拉出血热等致命性传染病及其周期性爆发,时刻危害着人类健康和社会稳定,其幕后黑手是结构多样、功能复杂且变异快速的病毒,而疫苗是预防病毒感染的有效手段。当前临床使用的疫苗或因病毒灭活致免疫原性和安全性差,或因制备工艺复杂而不通用,或因病毒突变致免疫逃逸失效,从而使人们往往谈病毒色变。

在国家创新药物专项、基金委和国家“973”计划的支持下,周德敏/张礼和课题组发现的这种人工控制病毒复制从而将病毒直接转化为疫苗的技术,即在保留病毒完整结构和感染力的情况下,仅突变病毒基因组的一个三联码,使流感病毒由致命性传染源变为了预防性疫苗,再突变三个以上三联码,病毒由预防性疫苗变为治疗病毒感染的药物。并且随着三联码数目的增加而药效增强。这一“四两拨千斤”技术不仅使疫苗研发不再复杂,而且摆脱了对病毒生物学知识获得的依赖,并适用于几乎所有病毒。这一发现颠覆了病毒疫苗研发的理念,成就了活病毒疫苗的重大突破。

周德敏介绍,他们研发的疫苗是活病毒疫苗,即保留了野生流感病毒完全的感染力,只是将它感染人体后在细胞内的复制和生产新病毒能力剔除了。通过这种方式,他们保留了病毒感染人体引发的全部免疫原性,即体液免疫、鼻腔粘膜免疫和T-细胞免疫,而对人体的毒性被控制了。这种方法完全不同于当前使用的仅部分免疫的灭活疫苗,也不同于仍然保留弱复制能力而有毒性危险的减活疫苗。这种通用方法可以做包括艾滋病、SARS和埃博拉出血热等几乎任意致命性病毒的疫苗和治疗性生物技术药物,并且可以用来开发影响国防安全的预防性生化武器。
ssizz 发表于 2017-3-10 10:52 | 显示全部楼层
 人民日报客户端 赵永新
  史无前例!北京时间3月10日凌晨三点出版的国际顶级学术期刊《科学》,以封面的形式同时刊发了中国科学家的4篇研究长文!
  由天津大学、清华大学和华大基因分别完成的这4篇长文,介绍了生物合成研究的最新突破:完成了4条真核生物酿酒酵母染色体的从头设计与化学合成——要知道,酿酒酵母总共有16条染色体,此前国际同行奋斗多年才发现了1条。
  在合成染色体的过程中,他们还突破了生物合成方面的多项关键核心技术,比如:突破合成型基因组导致细胞失活的难题,设计构建染色体成环疾病模型,开发长染色体分级组装策略,证明人工设计合成的基因组具有可增加、可删减的灵活性,等等。这些技术将帮助在全世界的生命科学研究和相关实际应用中大显身手,其价值不可估量。
  国内外同行指出,这是继合成原核生物染色体之后的又一里程碑式突破,有望开启人类“设计生命、再造生命和重塑生命”的新纪元。
  人工合成酵母染色体,意义何在?
  曾参与人类基因组测序计划的华大基因理事长杨焕明院士介绍说,合成生物学(Synthetic Biology)是继“DNA双螺旋发现”和“人类基因组测序计划”之后,以基因组设计合成为标志的第三次生物技术革命。他指出,生物学界内最重要的分类依据,既不是植物和动物,也不是多细胞和单细胞生物,而是以原核生物和真核生物来区分。“细菌、病毒等原核生物的基因组相对简单,而动物、植物、真菌等等真核生物的基因(DNA)既丰富又复杂,通常会包含数亿至甚至数十亿碱基对信息。同时,作为遗传物质的DNA通常被分配到不同的染色体中,而这些染色体又深藏在细胞核的特定区域。所以,合成一个真核生物的基因组是一项非常艰巨的任务。但是,如果生物学真正做到引领技术革命,合成真核生物基因组技术必将发挥非常核心的作用。”
  为完成设计和化学再造完整的酿酒酵母基因组,国际科学界发起了酿酒酵母基因组合成计划(Sc2.0计划),这是合成基因组学(Synthetic genomics)研究的标志性国际合作项目。该项目由美国科学院院士杰夫·伯克发起,有美国、中国、英国、法国、澳大利亚、新加坡等多国研究机构参与并分工协作,试图重新设计并合成酿酒酵母的全部16条染色体(长约12Mb,1Mb是百万碱基对)。
  天津大学化工学院教授元英进是最早参与该计划的中国科学家,此次在《科学》期刊上以通讯作者身份发表了2篇论文。他告诉记者,如同科学实验中经常使用的果蝇、斑马鱼,酿酒酵母是生物学研究中的“模式真核单细胞生物”。“如果说病毒基因组的合成开启了基因组化学合成研究,那么原核生物和真核生物基因组合成研究的不断突破,则初步实现了化学全合成基因组对单细胞原核生物和真核生物的生命调控。“酿酒酵母是第一个被全基因组测序的真核生物,大尺度的设计和重建酵母基因组是对目前酵母领域知识贮备的真实性、完整性和准确性的一个直接考验。化学合成酵母,一方面可以帮助人类更深刻地理解一些基础生物学的问题,另一方面可以通过基因组重排系统,使酵母实现快速进化,得到在医药、能源、环境、农业、工业等领域有重要应用潜力的菌株。”
  我国科学家在合成酵母中发现了什么?
  2014年,Sc2.0已创建了一个单一的人工酵母染色体。此次国际合作,中外科学家们共完成了5条染色体的化学合成,其中中国科学家完成了4条,占完成数量的66.7%,把Sc2.0计划向前推进了一大步。
  其中,元英进带领的天津大学团队完成了5号、10号(synV、synX)染色体的化学合成,并开发了高效的染色体缺陷靶点定位技术和染色体点突变修复技术;戴俊彪研究员带领清华大学团队完成了当前已合成染色体中最长的12号染色体(synXII)的全合成;深圳华大基因研究院团队联合英国爱丁堡大学团队完成了2号染色体(synII)的合成及深度基因型-表型关联分析。
  “人工合成基因组的尺度和复杂度的不断提升,向科学界对生物体运作方式以及生命本质的认知提出了越来越大的挑战。在基因组尺度的DNA合成中面临的一个巨大挑战,是定位人工基因组中影响细胞长势的序列,即缺陷(bug)。常规的排除缺陷(debugging)的方法有三种,都有费时耗力、效率不高的缺点。”元英进团队成员、“10号染色体”文章第一作者、天津大学博士生吴毅介绍说:在合成长达770kb(kb:千碱基对)的酿酒酵母10号染色体的过程中,我们创建了基因组缺陷靶点快速定位与精确修复方法,解决了全化学合成基因组导致细胞失活的难题。我们所得到的全合成酵母染色体具备完整的生命活性,能够成功调控酵母的生长,并具备各种环境响应能力。此方法在化学合成基因组研究中具有普适性,并且作为一种新颖的表型和基因组关联性分析的策略,有望显著提升我们对基因组结构和功能的认知。”
  “5号染色体”文章第一作者、天津大学博士生谢泽雄说,在全面推进Sc2.0计划的过程中,我们建立了基于多靶点片段共转化的基因组精确修复技术和DNA大片段重复修复技术,解决了超长人工DNA片段的精准合成难题。同时,我们首次实现了真核人工基因组化学合成序列与设计序列的完全匹配,系统性支撑与评价了当前真核生物的设计原则。该技术的突破为研究人工设计基因组的重新设计、功能验证与技术改进奠定了基础。利用化学合成的酵母5号染色体定制化建立了一组环形染色体模型,通过人工基因组中设计的特异性水印标签实现对细胞分裂过程中染色体变化的追踪和分析,为研究当前无法治疗的环形染色体疾病、癌症和衰老等发生机理和潜在治疗手段提供了了研究模型。此外,我们发展了多级模块化和标准化基因组合成方法,创建了一步法大片段组装技术和并行式染色体合成策略,实现了由小分子核苷酸到活体真核染色体的定制精准合成。”
  清华大学的戴俊彪团队,则设计合成了12号染色体。在研究中,他们开发了长染色体分级组装的策略,即:首先通过大片段合成序列,在6个菌株中分别完成了对染色体不同区域内源DNA的逐步替换;然后利用酵母减数分裂过程中同源重组的特性,将多个菌株中的合成序列进行合并,获得完整的合成型染色体。针对12号染色体上存在的高度重复的核糖体RNA编码基因簇进行删除及工程化改造,并利用修改后的重复单元在基因组多个位点重建了核糖体RNA编码基因簇。“该工作奠定了未来对其他超大、结构超复杂的基因组进行设计与编写的基础,同时也证明了酵母基因组中rDNA(核糖体DNA)区域及其他序列均具有惊人的灵活度与可塑性。”戴俊彪表示。
  深圳华大基因研究院与英国爱丁堡大学共同完成2号染色体的从头设计与全合成(长770 Kb),合成酵母菌株展现出与野生型高度相似的生命活性。该论文的第一作者、深圳国家基因库合成与编辑平台负责人沈玥介绍说,科研人员使用“贯穿组学(Trans-Omics)”方法,从表型、基因组、转录组、蛋白质组和代谢组五个层次系统地进行基因型-表现型的深度关联分析,证明了人工设计合成的酿酒酵母基因组可增加、可删减的高度灵活性。”
  令人欣喜的是,华大基因与爱丁堡大学合成的酵母菌株,不仅与野生型有高度相似的生命活性,而且对环境的适应性大大加强,其进化速度呈几何级提高。
  人工合成4条酵母染色体,价值几何?
  “2000年公布的人类基因组测序,中国只承担了百分之一的工作,这次我们完成了酿酒酵母染色体合成的四分之一,可以说是中国在合成生物学领域取得的突破性成果,进一步奠定了我国在这一领域的国际地位。”杨焕明说,“两相比较,不难看出我们在生命科学研究领域的巨大进步。在酿酒酵母设计与合成研究中,我们已由‘跟跑’转为‘并跑’,今后‘领跑’也不是不可能。”
http://www.chinanews.com/gn/2017/03-10/8170285.shtml
3431 发表于 2017-3-10 12:43 来自航空航天港手机版! | 显示全部楼层
ssizz 发表于 2017-3-10 10:52
 人民日报客户端 赵永新
  史无前例!北京时间3月10日凌晨三点出版的国际顶级学术期刊《科学》,以封面 ...

这以后绝对是把双刃剑
您需要登录后才可以回帖 登录 | 注册会员

本版积分规则

QQ|申请友链|旗下论坛|小黑屋|手机版|航空航天港 ( 豫ICP备12024513号 )

GMT+8, 2017-7-21 12:42 , Processed in 0.339879 second(s), 24 queries , Gzip On.

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表