航空航天港

 找回密码
 注册会员

QQ登录

只需一步,快速开始

楼主: 暴力英雄
收起左侧

[科技专项] 核高基重大专项:集中讨论(欢迎大家踊跃发言)

[复制链接]
langge945 发表于 2016-4-27 20:58 | 显示全部楼层
华讯方舟:成功研发世界首块石墨烯太赫兹芯片

发表时间:2016-04-27 16:48:38

字号:A-AA+
关键字: 石墨烯华讯方舟太赫兹石墨烯太赫兹芯片
深圳企业华讯方舟已成功做出世界首块石墨烯太赫兹芯片。
据人民网4月26日报道,华讯方舟创始人吴光胜接受媒体采访时称,已成功做出世界第一块石墨烯太赫兹芯片,“不过,该款芯片成本非常高,芯片实验室成本要20万美元,未达到量产阶段。”
太赫兹被誉为“改变未来世界的十大技术”,将促进宽带通信、雷达、电子对抗、电磁武器、安全检查领域的全方位变革。例如,相比检查癌症的核磁共振,太赫兹不仅对人体没有伤害,精确度高,且成本大幅度下降。

资料图:华讯方舟创始人吴光胜
在卫星通信方面,华讯方舟正在规划建设一个拥有108颗遥感卫星的网络。“届时,可以实现0.5米范围、10分钟对地球整个扫描一遍。拿起手机,便可以看见全世界任何一个地方。”
吴光胜建议,放开卫星民用市场,“一些很小的国家都有很多同步卫星轨位。别人都把轨位申请了,中国到时再去申请,只能花巨额费用买别人的。”
从微波到毫米波到太赫兹,华讯方舟沿着这一通讯技术路线发展,目前已处于世界领先位置。吴光胜说,“我们2007年来到深圳,之后几年一直埋头做研发;2011年到2014年,厚积薄发,连续三年一直保持400%的高速度增长。”
2015年8月,第一届太赫兹国际会议在深圳召开,华讯方舟是该会议的承办单位

http://www.guancha.cn/Science/2016_04_27_358440.shtml
langge945 发表于 2016-5-10 11:09 | 显示全部楼层
微电子所成功研制30Gsps超高速数据转换器

http://www.cas.cn/syky/201605/t20160509_4555994.shtml
超高速模拟数字转换器(ADC)和数字模拟转换器(DAC)是下一代光通信及无线宽带领域的核心芯片,在大数据中心、以太网光互联、短距离互联通讯等领域有着广泛应用。美、日等国自上世纪60、70年代起始终占据该领域的技术最高点。
  中国科学院微电子研究所于2006年在研究员刘新宇带领下成立了超高速数模混合电路研发团队,以实现AD/DA研制的整体跨越为目标。经过近10年的技术积累,团队在超高速ADC/DAC的设计方法、理论分析方法以及封装测试等方面积累了丰富的研究经验,在国内外一流学术刊物上发表了20多篇学术论文,申请了20余项发明专利,建立起了通用采样率为Gsps的数模混合电路的设计分析和测试评估平台。
  在国家“863”项目的支持下,该团队的研究工作取得了突破性进展,成功研制出超高采样率、宽频带的30Gsps 6bit ADC/DAC芯片,大大缩短了与先进国家的技术差距,为我国在该领域摆脱国外技术壁垒限制增加了关键性的筹码,对下游产业的发展起到了极大的促进作用。该芯片的使用简单灵活,可实现并行多波段/多波束运行,并可提供较高的动态范围。目前,该芯片已在武汉邮电科学院构建的1Tb/s相干光OFDM传输验证平台上实现应用验证。
  30Gsps 6bit ADC芯片面积为3.9mm x 3.3mm ,采用4路交织技术,子ADC采用自主创新的折叠内插架构。芯片内部集成三项误差校准电路,通过与FPGA配合可实现通道之间的自动校准。芯片输出采用24路高速串行数据接口,支持在30GSps采样率下全速率输出。芯片的最高采样率为30Gsps,每秒可产生300亿次模数转换,总功耗为8W。该款芯片的-3dB带宽为18GHz。在30Gsps采样率下,低频有效位达到5bit,高频有效位大于3.5bit,无杂散动态范围(SFDR)大于35dBc。
  30Gsps 6bit DAC的芯片面积为3mm x 2.8mm,采用了分段式电流舵DAC架构。该芯片集成24路高速串行数据接收器,以及4-1MUX高速电路,支持在30GSps采样率下全速率输出。该芯片还集成了占空比校正和延迟偏差校准电路。测试结果表明芯片在30Gsps 采样率下工作时,低频无杂散动态范围(SFDR)达到44dBc,在第一奈奎斯特区内SFDR大于28.5dBc。芯片总功耗6.2W。
i2000s 发表于 2016-10-30 07:16 | 显示全部楼层
本帖最后由 i2000s 于 2016-10-29 18:24 编辑

龙芯15周年 胡伟武披露龙芯3号开发历程

    • 中科院计算技术研究所研究员


发表时间:2016-10-25 09:19:19
原文见以下链接,本帖不予全文转载: http://www.guancha.cn/huweiwu/2016_10_25_378268.shtml


近日,龙芯中科宣布3A3000四核处理器芯片完成流片并通过系统测试。根据现有的测试结果,龙芯3A3000达到了预定的设计性能目标。其中,综合计算性能方面,在1.5GHz主频下,GCC编译的SPEC CPU 2006定点和浮点单核分值分别超过11分和10分;访存性能方面,Steam分值超过13GBps。龙芯3A3000的流片成功,标志着我国自主研发的高性能微处理器芯片,可以超越目前引进的同类芯片性能。

在香山别墅的讨论中还明确了龙芯3号片内集成内存控制器以及HyperTransport(简称HT)接口。HT是AMD主推的系统总线接口。当时计算所高性能中心与AMD合作紧密,希望我们使用HT接口。此外HT接口比较开放,只要每年交5000美元就可以用于商业应用,但AMD开放的HT接口不支持多片互连的Cache一致性协议,我们自己进行了扩充。曾经有一段时间,我后悔选择了HT总线,觉得HT总线不如PCIE总线普及,一是HT总线没有现成的PHY(片内高速接口模块)可以买到,每次工艺升级都需要定制HT的PHY,而PCIE的PHY有很多;二是PCIE接口的外围器件很多,而HT接口的桥片只有AMD有。但现在觉得选用HT是对的。HT是系统总线,协议简单高效,相当于Intel的QPI系统总线,而PCIE是IO总线,通过HT总线可以方便地把多片龙芯3号直连起来形成多路服务器。虽然每次工艺升级都要定制HT PHY,但可以使龙芯CPU不依赖别人的IP,自主性强。龙芯3号所有CPU中,没有一款CPU需要到厂家merge第三方IP。尤其是龙芯3A2000和3A3000,除了厂家提供的标准单元库、单/双端口RAM以及低速IO单元,每一行代码(包括CPU核、内存控制器、HT控制器、互连网络等)以及每一个定制模块(包括多端口寄存器堆、锁相环、HT PHY、DDR2/3 PHY等)都自主设计。至于外围桥片,龙芯已经开始研制并提供外围桥片,桥片上支持足够多的PCIE接口。以后不论AMD是否继续发展HT接口,龙芯都能自成体系往前走了。
香山别墅会议的另外一个成果是明确了龙芯抗辐照CPU的发展。有一天晚上8点左右,我们正在会议室热烈地讨论龙芯3号的结构,当时在计算所科研处工作的夏洪流和傅信国给我打电话说是要来跟我谈一个项目的事。他们到香山别墅已是晚上9点多,我们就坐在香山别墅的走廊尽头谈,他们说科学院有一个抗辐照CPU的预研项目,希望龙芯课题组来承担。我刚开始不愿意做,结果他们好说歹说地让我勉强答应了,当时的一个理由是领导每年对他们争取的项目经费有要求,我如果不做这个抗辐照CPU项目,他们的任务就完不成了,我头脑一热就答应了。现在龙芯抗辐照CPU已经随着以北斗为代表的多颗卫星在天空翱翔,每年还为龙芯公司带来较可观的收入,成为龙芯公司的战略产品并开始走向系列化。真是非常感谢夏洪流和傅信国那天晚上的苦口婆心。
由于自主CPU的通用处理性能不够,2013年起,“核高基”基本上放弃了CPU自主研发路线,转而支持引进国外CPU技术的路线。以IBM、AMD、威盛、ARM为代表的国外/境外CPU趁虚而入,纷纷寻求与国内企业合资或开放技术授权的方式,把原来的产品摇身一变成为自主CPU(操作系统和数据库也有类似情况)。这使得主要靠国家支持进行研发的龙芯CPU陷入了巨大困境。
2016年10月17日,龙芯3A3000通过了龙芯公司质量体系要求的商业级产品的鉴定检验摸底测试(工业级产品鉴定检验工作正在同步展开),表明龙芯3A3000可以进入批量生产状态。目前3A3000已开始小批量生产,其中经过测试支持通过直连形成多路服务器的芯片成为3B3000。
龙芯3A3000运行SPEC CPU2000定点分值1100多分,浮点分值1700多分,运行一遍不到一个半小时(如果使用计算所的编译器进行优化,定点和浮点分值还分别可以提高15%和30%以上)。回想2002年龙芯1号刚诞生时,运行一遍SPEC CPU2000需要近三天时间,龙芯2C由于SEPC CPU2000分值没有达到863课题合同要求的300分而没有完成验收,龙芯2E费了九牛二虎之力才勉强达到500分,真是“向来枉费推移力,今日中流自在行”。
3A3000研制成功对自主CPU来说具有里程碑意义。首先,3A3000的通用处理性能已经跨过了国际通用处理器性能的第一个门槛,其单核SPEC CPU2006性能已经不低于ARM用于服务器的高端处理器、Intel的低端系列(凌动系列)处理器以及威盛处理器(这些处理器在1-4核环境下2GHz时单核SPEC CPU2006性能一般在8-10分之间,如果核数更多,由于最后一级Cache巨大,性能会有所提高),而且3A3000的访存带宽已经与AMD以及Intel的高端系列(酷睿系列)持平。这样的性能玩复杂的3D游戏可能还有差距,但对于以党政办公为代表的事务处理应用是足够了(如果软件做适当磨合优化,3A2000就够了)。龙芯3A3000跨过了国际通用处理器性能的第一个门槛后,也为下一步跨越第二个门槛(即达到Intel和AMD主流处理器的性能)打下了坚实的基础。其次,3A3000的通用处理性能超过了目前靠引进ARM和威盛技术发展的国内同类(四核)CPU。“十一五”开始的自主信息化应用试点发现第一代自主CPU通用处理性能不够的问题后,国内CPU研制单位均展开了第二代CPU的研发,并衍生出三条不同的技术路线。第一条是以龙芯和申威为代表的“研”的路线,即通过分析第一代产品应用中发现的问题进行自主研发升级。第二条是“攒”的路线,即使用国外的处理器核“攒”SOC,并在此基础上对处理器核进行局部优化。第三条是“O(ODM)”的路线,即中国人掏钱请外国人干,目前主要是把国外/境外已有的现成设计直接拿过来换成中国的品牌。由于自主研发路线在“十一五”期间走了弯路,很多人对自主研发路线产生了疑虑,觉得此路不通,因此“核高基”在“十二五”期间主要支持以ARM的处理器核“攒”SOC的路线和“O”威盛的路线为主。一是钱多,二是引进别人的产品省时间,加上龙芯3A2000与境内工艺磨合,在产品化方面花了较多时间,从2014年年底到2016年年初大约一年半的时间,采用引进技术的CPU大肆攻击自主CPU性能不行,要求在已有的自主信息化试点中换掉龙芯(而且确实换掉了一些),给龙芯造成很大压力。
3A3000的通用处理性能超过引进的ARM和威盛技术的CPU,加上前些日子使用申威处理器的“太湖之光”高性能机取得世界第一的好成绩,充分说明不论是通用CPU还是高性能机专用CPU,自主研发的道路都是走得通的,不仅安全性好,性能也高。尤其是通过自主研发形成持续改进能力后,未来的后劲更足。可以说,在与引进CPU的技术路线的斗争中,龙芯3A3000是抗日战争的石牌保卫战,是解放战争的济南战役,拉开了自主CPU战略反攻的序幕。尤其值得指出的是,龙芯3A3000的研制没有得到任何国家项目的补助,是完全由企业自己掏钱研制的自主通用CPU,也具有里程碑意义。
根据Tick-Tock策略,我们制定了龙芯3号系列下一步研制计划。四核龙芯3A4000为Tock,继续使用目前的28nm工艺,争取主频达到2GHz以上,SPEC CPU2006单核分值达到20分以上。3A4000的主要结构优化包括:增加256位的向量指令,增加片内安全机制,以及进一步通过微结构优化提高流水线效率,争取每GHz的单核SPEC CPU2006分值达到10分(目前3A3000每GHz的单核SPEC CPU2006分值为7分,ARM的高端处理器为5-6分,X86主流处理器为10-15分)。目前3A4000的研制工作已经展开。在3A4000之后将研制Tick阶段的新一代处理器,初步考虑使用16nm或14nm的工艺以及3A4000的处理器核研制16核的龙芯3C。经过3A4000的又一轮优化,龙芯的处理器核微结构已经基本到位,是时候把2013年5月暂停的16核龙芯3C重新提上日程了。
在中国的近代史上,我们有三次向外国老师学习的经验,每次都是受老师欺负吃了亏后走上自力更生的道路。第一次是洋务运动,晚清时期中国海关关长都是英国人担任的,是中国历史上最开放的时期,却被西方列强欺负得水深火热,毛主席领导共产党推翻了三座大山,解放了中国人民。第二次是建国后向苏联学,一边倒,结果苏联在中国的土地上又想建联合舰队,又想建长波电台,毛主席拒绝后苏联又撤专家又逼债,毛主席还是领导中国人民自己搞了“两弹一星”,建立了自主可控的工业体系。第三次是改革开放,我们学习西方的管理理念和科学技术,刚开始觉得挺好的,现在有点觉得吃亏了(像我这样气性大的觉得忍无可忍了,很多人觉得还可以再忍忍)。2011年我国IT产业百强企业的利润总和是苹果公司的40%(我刚开始觉得华为是通信企业,可能不算在IT百强里面,后来查到华为也算在这里面时很有挫折感)。总是听专家说,我国跟美国的经济互相依赖,美国也不敢把我们怎么样,可是当美国制裁中兴时,我们不得不认怂,中兴公司定期向美国商务部报告工作,以获得延期制裁。美国可以通过不卖元器件在三个月之内把国人引以为豪的华为、联想、中兴等企业搞死,十大军工集团有大半开不了张,我们有哪种产品不卖给美国企业,会把美国的Intel、IBM、谷歌、微软、苹果搞死呢,我们顶多能把沃尔玛搞得比较难受。现在想想,毛主席周总理带着全国人民勒紧裤腰带炼钢铁、打油井、发展两弹一星,建立起自主可控的工业体系真是无比英明。
龙芯团队有一个老研究员黄令仪老师,今年八十岁了还天天在屏幕前拖着鼠标查版图。有一次我请黄老师参加某用于安全领域的芯片研发工作时,黄老师脱口而出:胡老师,我这辈子最大的心愿就是匍匐在地,擦干祖国身上的耻辱;我是亲眼见过我的同胞被日本鬼子的飞机炸死的。前辈的精神感染了我们,前辈的荣光照亮了我们前进的道路,让我们咬着牙关,勇往直前!
古人说“事非经过不知难”。但只要认真去做,也有“事非经过不知易”的道理。龙芯3号系列CPU通用处理性能在从2013年起的不到四年时间提高到了原来的五倍以上,充分说明了这个道理。
http://www.loongsonclub.com/gw/




回复 支持 1 反对 0

使用道具 举报

dadanil 发表于 2016-11-4 22:22 | 显示全部楼层
i2000s 发表于 2016-10-30 07:16
龙芯15周年 胡伟武披露龙芯3号开发历程
  • 胡伟武

  • 好文!精神不死就有希望。
    langge945 发表于 2016-11-17 14:01 | 显示全部楼层
    大型超导高场磁体装置研制获得成功(图)

    2016-11-16


    日前,中国科学院合肥物质科学研究院强磁场科学中心研究人员在用于混合磁体装置的大型超导高场磁体上实现了10万高斯的设计指标,为40万高斯混合磁体的联调成功奠定了一项关键基础。
    国家“十一五”重大科技基础设施——稳态强磁场实验装置项目包括产生40万高斯磁场的混合磁体装置,它由口径为920毫米的10万高斯超导磁体及包含其内的30万高斯水冷磁体组合而成,其中的水冷磁体已在9月份的单独试验中成功实现技术指标。大口径超导高场磁体由于成本高、难度大、风险高、研制周期长等因素,成为混合磁体研制能否成功的关键技术之一。该超导磁体的研制成功是国际超导技术发展的一个新的里程碑,此前世界上没有如此大型的磁体能够产生10万高斯磁场,也没有能产生10万高斯磁场的超导磁体能够达到如此大的口径。因此,它的研制成功不仅搭起了我国稳态强磁场科学研究的高平台,也为国际超导高场磁体技术的发展创造了新的成功经验。
    大型高场超导磁体装置是一个复杂的系统工程,它不仅需要磁体本身具有良好的电磁性能和机械性能,成功运行还需要氦低温冷却系统、超导磁体电源、安保和控制系统等多个子系统的密切配合和保障。因此,该超导磁体的调试成功,也是对自主研发的各相关子系统的成功检验。
    据悉,稳态强磁场能够为物理、材料、化学、生命科学等多学科前沿的研究提供难得的极端实验条件,因此,研制包括超导高场磁体在内的强磁场实验装置对于促进我国科学发展意义重大;不仅如此,大型超导高场磁体技术也具有其他十分重要的应用前景。强磁场中心将再接再厉,在现有基础上,力争早日完成40万高斯混合磁体装置的联调,不断攀登强磁场技术和科学研究的新高峰。来源:中国航空新闻网

    http://www.dsti.net/Information/Viewpoint/72368

    点评

    这个应该转到其他帖子吧。  发表于 2016-11-20 15:15
    langge945 发表于 2017-6-6 18:45 | 显示全部楼层
    半导体所等在多功能电子皮肤研究方面取得进展

    文章来源:半导体研究所    发布时间:2017-06-05  【字号: 小  中  大 】
      皮肤作为人体最大的器官,负责人体内部与外界环境的交互。在其柔软的组织下面分布着一个庞大的传感器网络,从而实时获得温度、压力、气流等外界信息的变化。电子皮肤通过模拟人类皮肤的传感功能,能实现或超越皮肤的传感性能,在机器人、人工义肢、医疗检测和诊断等方面展现应用前景。随着信息技术的不断进步,人们对发展高性能的电子皮肤的需求也不断增加。因此,具有超薄、可拉伸、多参数检测等性能的柔性电子皮肤正在引起广泛的关注和迅速的发展。
      中国科学院半导体研究所半导体超晶格国家重点实验室沈国震课题组与解放军总医院教授姜凯开展深入的合作,在前期系列研究成果的基础上(Nano Energy, 2016, 23, 7.; Nano Energy, 2017, 35, 121.; Adv. Mater. Technol. 2016, 1, 1600136.; Sci. China. Mater. 2016, 59, 173.),近期合作在电子皮肤领域取得了新进展,开发了一种可直接贴附在人体表面的超薄高像素柔性电子皮肤阵列。通过引入聚合物中空球纳米结构,传感器对环境压力展现出了超高的灵敏度(31.6 kPa-1),以及低的探测下限(0.6 Pa)。由于所制备的聚合物具有负温阻效应,传感器还对环境温度具有很好的响应。
      利用简单的半导体加工及转印工艺,设计了微米级的超薄可拉伸衬底及蛇形电极结构,使得器件不仅弹性好,也不易损坏,可以在不同环境下拉扯揉折之后,仍能感受到外部压力与温度的变化。将这种超薄电子皮肤应用于医学领域,成功地实现了对人体脉搏、语音、呼吸、体表温度等生理信号的实时快速监测,并实现了对不同物体的压力分布成像。为了避免人体生理信号监测中,体表温度变化对器件的影响,还对传感器进行了温度补偿进而提高器件在实际应用中的检测精度。
      这项研究发展了一种制备方法简单、环境友好、成本低廉、适宜大规模生产的超薄电子皮肤的制备途径,其高柔性及弹性也符合模拟人体皮肤的需求,因此具有重要的应用价值,有望作为一种新型的人造电子皮肤服务于未来机器人、义肢使用者和可穿戴设备上。该项工作得到了国家杰出青年科学基金、北京市自然科学基金以及中科院前沿科学重点研究项目等项目的支持。研究成果近期发表在《纳米能源》(Nano Energy,2017, 38, 28)期刊上。



    http://www.cas.cn/syky/201706/t20170605_4603781.shtml
    i2000s 发表于 2017-7-8 13:16 | 显示全部楼层
    2017年6月21日,“极大规模集成电路制造装备及成套工艺”国家科技重大专项(02专项)实施管理办公室组织专家在中国科学院长春光学精密机械与物理研究所召开了“极紫外光刻关键技术研究”项目验收会。评审专家组充分肯定了项目取得的一系列成果,一致同意项目通过验收,认为该项目的顺利实施将我国极紫外光刻技术研发向前推进了重要一步。
    极紫外(Extreme Ultraviolet,EUV)光刻是一种采用波长13.5nm极紫外光为工作波长的投影光刻技术,是传统光刻技术向更短波长的合理延伸。作为下一代光刻技术,被行业赋予拯救摩尔定律的使命。极紫外光刻光学技术代表了当前应用光学发展最高水平,作为前瞻性EUV光刻关键技术研究,项目指标要求高,技术难度大、瓶颈多,创新性高,同时国外技术封锁严重。
    中科院长春光机所自上世纪九十年代起专注于EUV/X射线成像技术研究,着重开展了EUV光源、超光滑抛光技术、EUV多层膜及相关EUV成像技术研究,形成了极紫外光学的应用技术基础。2002年,研制国内第一套EUV光刻原理装置,实现了EUV光刻的原理性贯通。2008年国家“极大规模集成电路制造装备及成套工艺”科技重大专项将EUV光刻技术列为“32-22nm装备技术前瞻性研究”重要攻关任务。长春光机所作为牵头单位承担起了“极紫外光刻关键技术研究”项目研究工作,成员包括中国科学院光电技术研究所、中国科学院上海光学精密机械研究所、中国科学院微电子研究所、北京理工大学、哈尔滨工业大学、华中科技大学。
    项目研究团队秉承锲而不舍的科研精神,潜心钻研,厚积薄发,历经八年的艰苦奋战,突破了制约我国极紫外光刻发展的超高精度非球面加工与检测、极紫外多层膜、投影物镜系统集成测试等核心单元技术,成功研制了波像差优于0.75 nm RMS 的两镜EUV 光刻物镜系统,构建了EUV 光刻曝光装置,国内首次获得EUV 投影光刻32 nm 线宽的光刻胶曝光图形。建立了较为完善的曝光光学系统关键技术研发平台,圆满完成国家重大专项部署的研究内容与任务目标,实现EUV 光学成像技术跨越,显著提升了我国极紫外光刻核心光学技术水平。同时,项目的实施形成了一支稳定的研究团队,为我国能够在下一代光刻技术领域实现可持续发展奠定坚实的技术与人才基础。
    验收会上,长春光机所贾平所长诚挚的感谢了与会专家及各合作单位对项目的大力支持。贾平所长指出从时机及技术难度方面考虑,EUV项目的布局正处于窗口期,希望国家给予持续稳定的支持。鼓励项目参研单位进一步发挥EUV学科优势,鼓足勇气并肩奋斗,在后续支持下取得更好的成果。
    02专项总体组技术总师,中科院微电子研究所所长叶甜春研究员做总结发言。叶甜春强调,在国际上EUV光刻大生产基地已经建立的形势下,我国EUV光刻研究要继续坚持下去,面向未来产业工程化需求,着力点要放在必须掌握的核心技术和有可能取得创新的突破点。此外,叶甜春研究员评价光刻机队伍是承担最核心、最高端、最艰苦任务的队伍,也是专项团队中最有战斗力、最能抗压、最值得信任的主力部队。鼓励项目团队肩负重大任务的责任与使命感,继续坚持勇攀高峰。
    02专项光刻机工程指挥部总指挥,前科技部副部长曹健林到会并致辞。作为国内最熟悉EUV光刻的领域专家,曹健林对于我国EUV光刻技术能力的提升感到欣喜,他认为中国已初步具备光刻技术的研发能力,并向着产业化目标前进,三十年前的“中国光刻梦”正在逐步变为现实。通过我国光刻技术研发能力的建设初步树立了坚持“中国光刻梦”的信心。
    http://www.ciomp.ac.cn/xwdt/yw/201707/t20170704_4822124.html
    langge945 发表于 2017-8-28 16:33 | 显示全部楼层
    我国成功研制采用国产智能模块的燃料电池多能源储能系统

    2017-08-28 15:59:00字号:A- A A+来源:科技部网站

    关键字: 燃料电池多能源储能系统燃料电池多能源储能系统国产智能燃料电池多能源储能系统国产智能模块
    据科技部网站28日消息,我国成功研制采用国产智能模块的燃料电池多能源储能系统,突破了IGBT智能模块设计、控制驱动和保护、工艺及试验等一系列关键技术,突破了多能源储能系统的电力电子关键技术,属国内首创、国际领先。该项目由浙江大学承担,联合厦门科华恒盛股份有限公司、嘉兴斯达半导体有限公司等单位共同完成。近期,该项目通过了科技部高新司组织的项目验收。
    报道称,电力电子智能模块以其高电能变换效率、高可靠性、控制性能好等突出优点,成为电力电子装置及系统的核心元件,广泛应用于新能源发电、数据中心和云计算、工业自动化和节能、航空航天和国防等领域。大功率储能系统是应对突发性灾害提供不间断电源的关键技术,是我国重大工程可靠供电的关键基础设施,其具有可靠性要求高、节能环保要求高等特点,是制约我国数据中心、精密制造、核电等发展的重要瓶颈。
    “十二五”国家863计划先进能源技术领域“采用国产智能模块的储能系统电力电子关键技术研发及应用”主题项目在绝缘栅双极型晶体管(IGBT)智能模块和储能系统电力电子关键技术方面取得重要进展,突破了IGBT智能模块设计、控制驱动和保护、工艺及试验等一系列关键技术,突破了多能源储能系统的电力电子关键技术,属国内首创、国际领先。该项目由浙江大学承担,联合厦门科华恒盛股份有限公司、嘉兴斯达半导体有限公司等单位共同完成。近期,该项目通过了科技部高新司组织的项目验收。
    该项目成功研制了1.2kV、1.7kVIGBT智能功率模块系列,开发了具有自主知识产权的智能IGBT智能功率模块设计方法,攻克半导体功率芯片高性能布局技术等难题。基于研制的国产智能功率模块,面向长备用、安全可靠、高效率的防灾供电,开发了多能源储能系统的电力电子系统设计方法,包括电力电子功率变换架构方案、多能源协同控制、容错技术等。在福建漳州工业园,建立了世界上首个包含燃料电池、天燃气、电力等多种能源的面向重大工程的应急电源应用示范系统。
    该项目的实施,突破了IGBT智能功率模块和面向重大工程供电的多能源储能系统的电力电子核心技术。智能IGBT功率模块关键技术已反哺于各种功率模块的产品,并应用工业变频调速、电动汽车驱动、光伏逆变器和数据中心电源等。面向重大工程的多能源储能系统已广泛应用于大型数据中心、核电、高端制造、航空航天、军工等重大工程的不间断供电系统。该项目实现我国大容量电力电子核心元件的国产化,并实现了面向重大工程的多能源储能系统的电力电子核心技术引领,对我国信息安全、中国2025制造、国防建设都具有重要的意义。

    http://www.guancha.cn/Industry/2017_08_28_424760.shtml
    langge945 发表于 2017-9-11 17:43 | 显示全部楼层
    中国首台“超级显微镜”:上天入地利器,打破英美日三国垄断

    2017-09-11 15:36:27字号:A- A A+来源:经济日报

    关键字: 超级显微镜中国散裂中子源首次打靶成功CSNS打破英美日三国垄断

    据经济日报9月11日报道,8月28日上午,中国散裂中子源首次打靶成功,中国有了自己的散裂中子源。被誉为“超级显微镜”的散裂中子源是了解微观世界的利器,原本仅英国、美国和日本三国拥有此设备。CSNS作为我国“十二五”期间建设的最大规模大科学装置,将成为发展中国家的第一台散裂中子源,跻身世界4大脉冲散裂中子源行列, 为高水平的科研成果提供有力支撑,并为解决国家可持续发展和国家安全战略需求的许多瓶颈问题提供先进平台。
    深入地下17米深处的CSNS加速器隧道,记者得以窥见这个即将封闭进入试运行的“庞然大物”——它包括1台8千万电子伏特的负氢离子直线加速器、1台16亿电子伏特的快循环质子同步加速器、2条束流运输线、1个靶站、首批建设的3台谱仪等。
    报道称虽然中子如此微小,但产生强中子束的散裂中子源却是异常庞大的装置,是各种高、精、尖设备组成的整体。世界上正在运行的脉冲式散裂中子源主要有英国的 ISIS、美国的SNS和日本的J-PARC,中国的CSNS是全球第四台。

    http://www.guancha.cn/industry-science/2017_09_11_426623.shtml
    您需要登录后才可以回帖 登录 | 注册会员

    本版积分规则

    QQ|申请友链|旗下论坛|小黑屋|手机版|航空航天港 ( 豫ICP备12024513号 )

    GMT+8, 2017-9-19 23:33 , Processed in 0.262308 second(s), 17 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表